Двойственности принцип - meaning and definition. What is Двойственности принцип
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Двойственности принцип - definition

СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Двойственность; Двойственности принцип

Двойственности принцип         

принцип, формулируемый в некоторых разделах математики и заключающийся в том, что каждому верному утверждению этого раздела отвечает двойственное утверждение, которое может быть получено из первого путём замены входящих в него понятий на другие, т. н. двойственные им понятия.

1) Д. п. формулируется в проективной геометрии на плоскости. При этом двойственными понятиями являются, например, "точка" и "прямая", "точка лежит на прямой" и "прямая проходит через точку". Каждой аксиоме в проективной геометрии на плоскости формулируется двойственное предложение, которое может быть доказано с помощью этих же аксиом (этим обосновывается Д. п. в проективной геометрии на плоскости). Двойственными утверждениями в проективной геометрии на плоскости являются известные теоремы Паскаля и Брианшона. Первая из этих теорем утверждает, что во всяком шестивершиннике, вписанном в линию 2-го порядка, точки пересечения противоположных сторон лежат на одной прямой (рис. 1). Вторая теорема утверждает, что во всяком шестистороннике, описанном около линии 2-го порядка, прямые, соединяющие противоположные вершины, пересекаются в одной точке (рис. 2).

2) Д. п. в абстрактной теории множеств. Пусть дано множество М. Рассмотрим систему всех его подмножеств А, В, С и т.д. Справедливо следующее предложение: если верна теорема о подмножествах множества М, которая формулируется лишь в терминах операций суммы, пересечения и дополнения, то верна также и теорема, получающаяся на данной путём замены операции суммы и пересечения соответственно операциями пересечения и суммы, пустого множества Λ - всем множеством М, а множества М - пустым множеством Λ. При этом дополнение суммы заменяется пересечением дополнений, а дополнение пересечения - суммой дополнений.

Пример 1. Верному соотношению

(A ∪ В)∩ С = (A ∩ С)(В∩ С)

двойственно соотношение (также верное)

(А∩ B) ∪ C = (A ∪ С)(В ∪ С)

Пример 2. Верному соотношению

(A∪B)∪(Ā∩`B) = M

двойственно соотношение (также верное)

(Ā∩ `B)∩(А∪ В) = Λ ,

где Ā, `B - дополнения множеств А, В во множестве М, А ∩ В - сумма множеств А и В, A ∩ В- их пересечение.

3) Д. п. имеет место в математической логике (в исчислении высказываний и в исчислении предикатов).

4) О топологических законах двойственности см. Топология.

Лит.: Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961; Александров П. С., Введение в общую теорию множеств и функций, М. - Л., 1948; Гильберт Д. и Аккерман В., Основы теоретической логики, пер. с нем., М., 1947.

Рисунки 1 (слева) и 2 (справа) к ст. Двойственности принцип.

Принцип двойственности         
Принцип двойственности — наименование различных вариантов и проявлений феномена двойственности в разных разделах математики.
двойственность         
ДВ'ОЙСТВЕННОСТЬ, двойственности, мн. нет, ·жен. (·книж. ). ·отвлеч. сущ. к двойственный
. Двойственность в характере.

Wikipedia

Принцип двойственности

Принцип двойственности — наименование различных вариантов и проявлений феномена двойственности в разных разделах математики.

  • Принцип двойственности в проективной геометрии — двойственность между понятиями точки и прямой.
  • Принцип двойственности в теории множеств — двойственность, выражаемая в возможности перехода к эквивалентным утверждениям взаимозаменой объединения и пересечения с дополнением аргументов и взаимозаменой пустого множества и универсума, проявление законов де Моргана, имеющего место во всех булевых алгебрах.
  • Двойственность в топологии:
    • Двойственность Александера
    • Двойственность Понтрягина
    • Двойственность Колмогорова